DOCUMENT RESUME

ED 428 677 IR 019 338
AUTHOR James, Jeff

TITLE Practical Issues in Interactive Multimedia Design.
PUB DATE 1998-06-00

NOTE 7p.; In: ED-MEDIA/ED-TELECOM 98 World Conference on

Educational Multimedia and Hypermedia & World Conference on
Educational Telecommunications. Proceedings (10th, Freiburg,
Germany, June 20-25, 1998); see IR 019 307. Some figures may
not reproduce clearly.

PUB TYPE Reports - Descriptive (141) -- Speeches/Meeting Papers (150)
EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS Artificial Intelligence; *Computer Assisted Instruction;

*Computer Software Development; Constructivism (Learning);
*Courseware; Foreign Countries; Higher Education;
Hypermedia; *Instructional Design; Interaction; Models;
Molecular Biology; *Multimedia Materials; Teaching Methods

IDENTIFIERS Hong Kong Polytechnic; Interactive Courseware; Learning
Environments

ABSTRACT

This paper describes a range of computer assisted learning
software models--linear, unstructured, and ideal--and discusses issues such
as control, interactivity, and ease-of-programming. It also introduces a
"compromise model" used for a package currently under development at the Hong
Kong Polytechnic University, which is intended to teach students principles
of molecular biology, incorporating three activities--concepts, practice, and
assessment. Difficulties involved in trying to build intelligence into the
practice sectors is also discussed, particularly the irony of designing
software which can actually disadvantage good students. Eight figures
present: an electronic book; unstructured hypermedia software; a cartoon of
"the intelligent tutor"; a mild constructivist model made up of three-part
units; a sub-menu of the molecular biology project; an example content page;
an example activity; logic depicting possible feedback; and a more
incremental and fair routine. (Contains 11 references.) (Author/DLS)

(2RSSR R SRR AR SRR R RS R R 2R R 222222 ittt i sl Sy

* Reproductions supplied by EDRS are the best that can be made *

* from the original document. *
I X AR AR AR TSRS RS RS R R SRS R SRR SR A R X R R 2 2 2 2 o a2 R 2 a2 a2 2 otatss 2

ERIC

Aruitoxt provided by Eic:

Practical Issues in Interactive Multimedia Design

U.S. DEPARTMENT OF E%UCATION
F an

Office of Edi p "
TSR s
O This document has been reproduced as Jeff James

L?f;?'n“;?n';‘?T the porson or organizzion Educational Development Unit G.H. Marks
o ?,"ni2?&??;',332337?352“{3? dete Hong Kong Polytechnic University
Hong Kong SAR, China

- — e : : -mail: etii edu.
Points of view or opinions rs"t;t:ap::se:‘s‘ Tel: +852 2766 6290, Fax: +852 2334 1569, E-mail: etjjames @polyu.edu.hk 7O THE EDUCATIONAL RESOURCES
official OERI position or policy. INFORMATION CENTER (ERIC).”

Abstract: CAL (Computer Assisted Learning) software can be designed using the same principles of
teaching which apply to the design of traditional teacher delivery. Software can be a simple page-flipping
delivery system, or can incorporate components associated with active learning. Likewise, CAL software
can vary according to the amount of control and “advice” given to the learner. Compromises can be made
concerning the complexity of the educational environment produced with corresponding differences in the
complexity of the programming used to produced the software. A program intended to teach principles of
molecular biology is an example of software which attempts to incorporate components of both receptive
and constructivist learning. It is designed to incorporate a certain amount of intelligence but in doing so,
also introduces the question of fairness to different users.

ED 428 677

1. Introduction

While computers continue to increase in memory capacity, speed, and multimedia delivery, the most
critical factors in educational software design are concerned with the incorporation of interactivity into the CAL
environment. Just as university teaching can vary from uni-directional, didactic lecture presentations to student-
centred environments in which the learners inquire, discuss, discover, and generally contribute to their own
learning, educational software can be designed which to follow a similar range of models.

This paper describes a range of CAL software models and issues such as control, interactivity, and ease-of-
programming. It also introduces a “compromise model”, used for a package currently under development,
which is intended to teach students principles of molecular biology, incorporating three activities- Concepts,
Practice, and Assessment. The paper will also consider the difficulties involved in attempting to build some
“intelligence” into the Practice sectors, particularly the irony of designing software which can actually
disadvantage the “good” students.

2. A Linear Approach to Software Design

The lecture style has a long-standing tradition in university settings. This one-way didactic teaching method
is based on a model where a subject expert presents information to students. This information can be relayed
verbally or in text form, with the result of this information being transcripted into students’ notes. Advantages
of this expository teaching style include efficiency (often with a teacher-to-student ratio of one-to-hundreds) and
the relative ease of preparation and delivery. However, it can be argued that a good text could replace this
teaching method with the favourable end result of less errors in the students’ resultant written material (lecture
notes would rarely be edited to the accuracy of a textbook).

The simplest and by far the easiest-to-program CAL software model has a linear, sequential structure. It
follows a book metaphor where typically, the reader begins on page one and reads pages in order until the end
of the book is reached. A computerised book may have the advantage of incorporating multimedia objects on
each page, but the essential structure of this model as shown in [Fig. 1] is the electronic equivalent of a lecture.
Control is determined by the order of the content, the user simply clicking a “next page” button. Presentation
software such as PowerPoint could be used for creating and delivering such a book. James et al (1998) describe
how beginning educational software programmers tended to design linear systems.

start —)l —>| —>---—>| —)Iend

opfc BESTCOPYV Auaiiabis :

JAFullToxt Provided by ERIC

01933 ¢

o

Q

ERIC

Aruitoxt provided by Eic:

Figure 1: An electronic “book™.

3. An Unstructured Model

The opposite approach to learning from the one mentioned above is one which gives students complete
control of their information acquisition. Handing a student an encyclopedia or giving access to the World Wide
Web are two examples of placing unrestricted learner-control tools in the hands of the student for a potentially
rich, active, investigative environment.

[Fig. 2] shows graphically a typical hypermedia software model which, like the electronic book, is a simple
point-and-click environment, but which allows complete user-control. The user can traverse any part of the
structure, limited only by the buttons available at each node. A structure like this is still relatively easy to
program using any authoring tool (such as HyperCard or ToolBook) which allows node (card or page) creation
and linking between nodes.

~N

Figure 2: Unstructured hypermedia software

While the amount of control may be different for each of these teaching methods, the commonality is the
lack of interaction between computer and user.

4. The Ideal Model

An idealistic teaching model would be based on a “tutoring” concept; the program would ask the user a
question, accept any answer and give expert feedback, ask another question, etc. Unfortunately, this all-wise,
infinitely-patient, intelligent tutor [Fig. 3] would require a level of artificial intelligence which would increase
the programming complexity immeasurably.

Figure 3: The Intelligent Tutor

It has long been recognised that there is more value in a “deeper” learning approach to education than that
which is represented by the “expository”” model. Laurillard (1993), in her comprehensive analysis of teaching in
higher education, suggests that an active-engagement approach as advocated by educational psychologists
Piaget and Bruner, is as relevant to university students as it is to younger learners. In practical terms, an
environment such as this contains more learner-directed investigations (from the “hypermedia model”),
combined with a significant amount of interaction (from the “tutor model’).

In designing computer assisted learning tools, it is reasonable to attempt to design software which involves
learners in the most powerful educational environment possible. Latchem et. al. (1993) advocate basing

3

Q

ERIC

Aruitoxt provided by Eic:

software design on sound pedagogical principles such as constructivism where students work in a knowledge-
construction environment designed to be interesting, challenging, problem-oriented, and sometimes
experimental.

The issue of control is fundamental to constructivist learning. In discussing the amount of control in CAL
software, Schwier and Misanchuk (1993) caution that different learners have different amounts of control
requirements. High-achieving students apparently benefit from having higher degrees of control whereas less-
able and sometimes more naive students require more direction and structure to be administered by the
computer program. It follows that educational computer software will be more adaptable to a range of students
if it is flexible enough to allow different amounts of control by the users, although from a practical
programming perspective, this is difficult to achieve.

Current interactive multimedia software often contains hypermedia knowledge structures. These are nodes
of information (for example, screens of information), connected together by links (often in the form of buttons
pointing to other screens). According to Muffoletto and Knupfer (1993), hypermedia enables students to explore
information resources and can provide them with the opportunity to actively use newly-discovered information
in the production of new knowledge. Jonassen et al (1991, p237) agree that “hyper environments” are “among
the best examples of constructivist learning environments”.

Assuming that more powerful learning environments as discussed above can be programmed into CAL
systems, Csete and James(1996) have proposed a conceptual framework for designing an instrument to
encourage learner control and engagement. This framework is in the form of a template with three components:
(1) a window for the presentation of basic (and new) information, (2) a menu of learning options, and (3) a
“safe” learning workspace for experimentation and the application of new concepts, principles, and skills in a
non-threatening environment. Within the third template component, it is expected that learners will be
encouraged to try new things, repeat activities, and explore “what if” scenarios. Rather than a completely free,
open, and 100% learner-controlled environment, the viewpoint was that there will be a “guided discovery”
situation where the program shares control with the learner. Lowyck and Elen (1991, p214) label advocates of
this compromised position “mild constructivists”,

“Mild constructivists argue that, though self-regulated learning might be the ideal, most learning
involves the interaction between internal (cognitive) and external (e.g. instructional materials)
monitoring and that learning processes can be initiated both internally and externally.”
A CAL program which has a modified hypermedia design, consisting of nodes connected by links including
components of guidance from and interaction with the program, is consistent with this compromise.

[Fig. 4] shows a conceptual model of a CAL program which has a general sequential structure of units, but
within each unit there is (1) information delivered to the student, (2) an environment where the student can
investigate, and (3) “intelligent” interaction between the student and the program. A model such as this attempts
to incorporate constructivist opportunities and interaction within a guided-delivery system.

. “intelligent” interaction

investigation

content

Figure 4: A “mild constructivist” model made up of three-part units.

The content component is similar to a sequence of one or more nodes in the “lecture” model, each node
explaining a concept using text, diagrams, pictures, animations etc. The investigation component can vary, but

Q

ERIC

Aruitoxt provided by Eic:

typically will be an activity where the students make decisions based on what they understand of the content. It
should be noted that activities such as these often require sophisticated design and programming skills.

The “intelligent” interaction consists of a “dialogue” which can be programmed using logical structures
(e.g., if-then-else statements). This component addresses the concern expressed by Latchem et. al.(1993) that a
majority of interactive multimedia systems are a “shallow” result of a simple menu-and-selection philosophy of
interaction. They also see a potential for a more Socratic environment, posing questions and challenges. This
view is supported by Larkin and Chabay (1992, p170) who propose, “Never tell when you can ask”.

Larkin and Chabay caution, however, that designing interactive programs is a difficult task- the
programming logic and possible pitfalls can be seen in the following example. The result of a well-designed
comprehensive dialogue can be worth the effort, the alternative being what Bates(1995) describes as a lack of
flexibility leading to student frustration when reasonable responses are not “recognised” by the computer.

5. Example Case

In early 1996, the Hong Kong Polytechnic University allocated Hong Kong University Grants Commission
funds for projects which implemented interactive multimedia technology in teaching and learning situations at
the University. A sub-project of one of the successful grant applications is called Molecular Biology which is
intended to develop a teaching tool to aid third-year students to learn DNA technology. The philosophy behind
the design of this project is to create CAL software which is consistent with the “mild constructivist” model
given above. It incorporates high-resolution graphics and animation, and was authored using Micromedia
Director. [Fig. 5] is a snapshot of a sub-menu of the program.

. 5 Balymerase Cb:einm!_.?;.‘_tcﬁmg

Figure 5: A Sub-Menu of the Molecular Biology Project.

The Concept part delivers subject content to the student; an example page is shown in [Fig. 6a]. This
particular page gives an animation demonstrating how temperature affects DNA strand separation.

e Rascwe: Mhws Reatins

" et .
p— ‘m’;‘ d-" Theimal Uvclet
N 1)
Jreantwetaps g a'“"mmu"“" assret! 5
W gtz e kg e)\.“
]

apatmea JRree TR

Hea20. Thinep ey

SHECHRE G R oA

Aol »2rerrsemssipseeeemeresapnes
nreernshies R P I LS
Mt A m‘;‘.«@*M.. 225193292 9044 SSRGS A DRSS ST RE HE0T A
AR 295 %
iwbunh catrads g §t
b

-

[E5] el [owe [o07 [emy [

Figure 6a: Example Content Page. Figure 6b: Example Activity

The Practice option provides a problem-solving environment with appropriate user-computer interaction.
[Fig. 6b] displays an activity where the student is expected to specify three temperatures using temperature

5 BEST COPY AVAILABLE

slides. When the temperatures are set and the Start button pushed, the computer will report appropriate feedback
to the student. This feedback is in the form of a written report. [Fig. 7] is a diagram displaying the logic the
computer program will follow in determining feedback to the student’s temperature settings (D, A, and P). Each
of the seven possible reports will be a unique “intelligent” response to the temperatures which the student
specified (note that in the actual package there are sixteen reports available, rather than seven). If the user sets
all three temperatures correctly (D =95, A is between 40 and 50, and P is between 70 and 75 degrees), Report 5
is given and control then leaves this routine, progressing to the next step in the program. If incorrect
combinations of temperatures are specified, an appropriate report is given and the user has the opportunity to
specify a new set of temperatures.

Report 1

Temp P
>75

<70

Report 3 |

&

Figure 7: Logic Depicting Possible Feedback.

While the logic described above appears to be reasonable, the designers have a dilemma: assuming that the
six “incorrect” reports are information-rich for each respective combination of temperatures, it could follow that
the “good” student who gets the correct temperatures upon the first (or even second) attempt would have
learned something else from some of the incorrect reports. If this is so, then the student was disadvantaged by
leaving the routine following their correct input. Designers are cautioned therefore, that perhaps a more “fair”
routine would look like that shown in [Fig. 8] where all students have the opportunity to gain from a variety of
situations, in this particular case, from investigations arising from different incorrect temperature settings.

Example questions which would generate reports could be:

Report 1: What would you expect to happen if the Denaturation temperature was set to less than 95?

Report 2: Good! Did you also know that “de-oxy” means “‘removing oxygen”?

enter |

Ask a question

Report 1

Report 2

« BEST COPY AVAILABLE i

Q

ERIC

Aruitoxt provided by Eic:

_i:sk another question etc.
ﬁ

Figure 8: A More Incremental and Fair Routine.

The inevitable tradeoff with this structure however, is that all students must go through all possible settings,
increasing the time of sitting by most students and more importantly, minimising the individuality of program
runs.

In the spirit of the active learning approach however, guidance could be given in a more open-ended
manner; for example “Investigate a wide range of temperature settings” could result in a variety of reported
results as in effect, the student would be instructed to traverse the whole structure of [Fig. 7]. However, this
would favour Schwier and Misanchuk’s (1993) “high-achiever” students. A designer wanting to incorporate an
“all things for all people” philosophy could cater for both types of students by adding another selection page
with two buttons, one labelled “Sequential path approach™ and the other “Open-ended approach”.

6. Conclusion

Just as there are different teaching methods and styles, CAL software can be designed to reflect different
teaching philosophies. Active learning approaches can be incorporated into computer programs to promote more
effective learning, but there will be a tradeoff between more powerful learning tools and programming
practicalities. Furthermore, it is not possible to build the “perfect” CAL program because of the differences
between learners and hence, their learning styles. Perhaps the most serviceable educational software designs are
accomplished by incorporating both guided and self-discovery components. In all cases however, interactive
software designs must include components of intelligence and fairness to all learners.

7. References

[Bates 1995] Bates, A. Technology, Open Learning and Distance Education , Routledge, London.

[Csete and James 1996] Csete, J., and James, J. “The guided discovery template: a general model for using a constructivist
approach in learning situations”, conference proceedings for the I2th Annual Conference on Distance Teaching and
Learning: Designing for Active Learning, pp. 69-75; Madison, Wisconsin.

[Duffy et al 1991] Duffy, T., Lowyck, J., and Jonassen, D. (eds). Designing Environments for Constructive Learning,
Springer-Verlag, Berlin.

[James et al 1998] James, Jeff, Csete, Josephine, and Kwan, K.P. A model for supporting subject-matter expert faculty in
developing quality computer assisted learning software. To be published in the ED-MEDIA/ED-TELECOM 98 conference
proceedings and presented at the World Conference on Educational Multimedia and Hypermedia in Freiburg, Germany,
June 20-25, 1998.

[Jonassen et al 1991] Jonassen, D., Mayes, T., and McAleese, R. “Manifesto for a Constructivist Approach to Uses of
Technology in Higher Education”, in Duffy, T. et. al., Designing Environments for Constructive Learning, p231-247.
[Larken and Chabay 1992] Larkin, J., and Chabay, R. (eds). Computer-Assisted Instruction and Intelligent Tutoring
Systems: Shared Goals and Complementary Approaches, Lawrence Erlbaum Associates, New Jersey.

[Latchem et al 1993] Latchem, C., Williamson, J., and Henderson-Lancett, L. Interactive Multimedia: Practice and
Promise, Kogan Page, London.

[Laurillard 1993] Laurillard, D. Rethinking University Teaching: a framework for the effective use of educational
technology, Routledge, London.

[Lowyck and Elen 1991] Lowyck, J., and Elen, J. “Transitions in the Theoretical Foundation of Instructional Design”, in
Duffy, T. et. al., Designing Environments for Constructive Learning, p213-229.

[Muffoletto and Knupfer 1993] Muffoletto, R., and Knupfer, N. (eds). Computers in Education, Hampton Press Inc., New
Jersey.

[Schwier and Misanchuk 1993] Schwier, R., and Misanchuk, E. Interactive Multimedia Instruction, Educational
Technology Publications, New Jersey.

Acknowledgement

The author would like to thank Dr. Daniel Lee, the subject specialist for this project, for his valuable contribution.

U.S. Depariment of Education E n Ic
Office of Educational Research and Improvement (OERI)

National Library of Education (NLE)
Educational Resources Information Center (ERIC)

NOTICE

REPRODUCTION BASIS

R This document is covered by a signed “Reproduction Release
(Blanket) form (on file within the ERIC system), encompassing all
or classes of documents from its source organization and, therefore,

does not require a “Specific Document” Release form.

D This document is Federally-funded, or carries its own permission to
reproduce, or is otherwise in the public domain and, therefore, may
be reproduced by ERIC without a signed Reproduction Release form

(either “Specific Document” or “Blanket”).

EFF-089 (9/97)

